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SUMMARY

Traditional design approaches for composite materials have employed deterministic criteria for failure
analysis. New approaches are required to predict the reliability of composite structures, since strengths and
stresses may be random variables. This report will examine and compare methods used to evaluate the
reliability of composite laminae. The two types of methods that will be evaluated are fast probability

integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the
probability that an explicit function of random variables is less than a given constant. Using failure criteria

developed for composite materials, a function of design variables can be generated which defines a "failure
surface" in probability space. A number of methods are available to evaluate the inte_ation over the
probability space bounded by this surface; this integration delivers the required reliability. The methods which
will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI

methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance
sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability
estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design
variables (strength distributions) and importance factors is also presented.

1. INTRODUCTION

Composite Materials

Fibrous composite materials consist of at least two constituents: a series of purposefully oriented fibers,
surrounded by a solid matrix. Typically, the fibers act as load-carrying members while the matrix transfers
the load between them while fixing the fibers in the desired orientation and location within the composite.
The resulting material is both strong and stiff. In addition to improving strength and stiffness, the mixture
improves the survivability of the material by improving toughness and protecting the usually susceptible
fibers from environmental damage. The most common form of composites is a stack of relatively thin layers
of fibers and matrix (laminae), each with a specific fiber orientation, bonded together to form a laminate.
The orientations and the stacking sequence (of laminae) can be controlled in order to generate a variety of

mechanical properties.
Due to the relatively low density of the matrix material, composites usually have much higher strength-

to-weight ratios and stiffness-to-weight ratios when compared to traditional structural materials (e.g., metals).
In addition, composites are often more fatigue resistant than these materials. Unlike traditional materials,
which have nearly equal properties regardless of the direction of measurement, composites frequently have
anisotropic material properties. In most unidirectionally oriented fiber-reinforced composites, the tensile
strength and modulus are a maximum in the longitudinal or axial direction of the fibers. Many other
properties, such as thermal and moisture expansion, thermal conductivity and impact strength are also
directionally dependent. Most laminates use a multidirectional stacking sequence to provide a desired or
tailored set of material properties.

Although composites offer the possibility of tailoring material properties to a particular application,
their design requires more care than monolithic metals or ceramics. The elastic properties of composites are
relatively well controlled and reproducible, but the strength of composites may be more widely distributed
due to the inherent inhomogeneity of the microstructure. It is sensible then, to speak not of "safety factors,"

but of reliability, using a knowledge of the distribution of composite strengths. We shall first review the use
of deterministic failure theories, then indicate how a "design variable" approach can be used to calculate a

reliability value.



Reviewof DeterministicFailureTheories

Failureanalysisinadesignproblemconsistsof thecomparisonof thestress(duetotheappliedload)
totheresistance(orstrength)of thematerial.Withtheapplicationof multiaxialstresses,a failuretheory
basedon thecombinedstressesmustbeused.In traditionalmaterials(suchasaluminumorsteel)thetheories
commonlyusedarethemaximumallowableshearstress(Tresca)theoryor thedistortionalenergy(vonMises
criterion).Thesetheoriesutilizetheisotropyof thematerialsandarebasedonplasticdeformationasthe
modeof failure.Compositesareanisotropicanddonotnormallyexhibitthistypeof failure.Thereforefailure
theoriesdevelopedfor isotropicmaterialsarenotapplicabletocompositematerials.Manynewfailure
theorieshavebeendevelopedspecificallyforcomposites;theserelyonavarietyof failuredefinitions.They
alsoconsiderthedirectionalityandgeometryof thecomposite.

Forapplicationin athinlaminatedstructure,thestrengthof thelaminaischaracterizedbyfive
strengthpropertiesin thematerial'scoordinatesystem:

SLt
SLc
STt
STc
SLTs

= Longitudinal(Axial)TensileStrength
= Longitudinal(Axial)CompressiveStrength
= TransverseTensileStrength
= TransverseCompressiveStrength
= In-plane(Interlaminar)ShearStrength

Boththelongitudinalandtransversestrengtharesign-dependent,whiletheshearpropertyis independentof
thesignof theloading,giventheusualorthotropicsymmetry.Thesefivepropertiesmustbedetermined
experimentally.

Forfailureanalysistheplanestressconditionof anorthotropiclaminaisassumed.Thisis shownin
figure1-1.

X

Figure 1-1: General Stress State of an Orthotropic Lamina [10]



Thelaminacontainsunidirectionalfibersatafiberorientationangleof (9withrespectto the primary

geometric axis (x). The proposed failure theories require the transformation of the applied stresses from the
lamina or geometric coordinate system (x, y) to the principal material coordinate system (1, 2). This
transformation is defined by equations (1.1) to (1.3).

er 11 = (_xx c°s20 + (_yy sin20 + 2XxySinOc°sO (1.1)

(_22 = (_xx sin2® + ayy c°s20 -2XxySinOc°sO (1.2)

x12 = ((_yy - (_xx)sinOcosO + Xxy (cos20 - sin20) (1.3)

where (_ 11, _22 and x 12 are the transformed stresses, longitudinal, transverse and shear respectively, and (_xx,

Cyy and _xy are the applied stresses. The two failures theories used to evaluate reliability in this report are
the Tsai-Hill theory and the more general Tsai-Wu theory.

Tsai-I-lill: This theory, developed by V.D. Azzi and S.W. Tsai, and also referred to as the Azzi-Tsai-
Hill failure theory, is based on the anisotropic yield criterion for metals (developed by Hill). It proposes that
failure occurs when equation (1.4) is satisfied (ref. 10):

2 2 2
(_11 Cl 1(_22 (_22 x12

- 4- 4-
2 S 2 2 2

SLt Lt STt SLTs

- 1 (1.4)

This equality is for tensile loads only. If compressive loads are applied (either in the longitudinal or
transverse direction) then the corresponding compressive strengths are substituted. This criterion defines a

failure envelope which is the graphical representation of the failure theory in the stress coordinate system.

The envelope forms the boundary between the the safe region and the failure region. Using (_11 and (_22 as

the variables defining the coordinate axes the failure theory can be defined on a quadrant-by-quadrant basis.

In the +c 11 / +_22 quadrant,

2 2 2

Cl___L1- (_11(_22 + (_22 - 1- x12

S 2 2 S 2 S 2
Lt SLt rt LTs

(1.5)

In the +(_ 11 / -(_22 quadrant,

2 2 2
(_11 (_11 (_22 (_22 x12

_- + -1---
S 2 2 S 2 2

Lt SLt Tc SLTs

(1.6)

In the-(_11 / +(_22 quadrant,

2 2 2

(_11 (_11(_22 + (_22 _ 1 - xl---'---_-2

2 S 2 S2 S2
SLc Lc rt LTs

In the ---c I 1/ -(_22 quadrant,

(1.7)



2 2 2
_11 _11 _22 _22 "_12

+ - 1 (1.8)
S 2 2 2 S2

Lc SLc STc LTs

These four equations define a failure envelope. The continuous but non-smooth nature of the failure envelope
is due to the anisotropic strength characteristics.

Tsai-Wu: This failure theory (developed by S.W. Tsai and E.M. Wu) proposes that failure occurs when
the following equality (equation (1.9)) is satisfied (ref. 10):

2 2 2
FI_ 11 + F2t_22 + F6"c 12 + F1 lt_l 1 + F22c22 + F66x12 + 2F12_ 1 lC_22 = 1 (1.9)

where F i and Fij are called the strength coefficients and are defined as:

1 1 1 1
F 1 F 2 - F 6 = 0

- SL t SLc STt STc

1 1 1

Fll- SL t SLc F22- STt STc F66- $2
LTs

with SLc and STc > 0. The F12 term represents the interaction of the longitudinal and transverse stresses.

Since all other factors are known, this term can be determined by a number of experimental procedures. One

possible technique is to perform an equi-biaxial test (with applied transverse and longitudinal stresses only),

where c 11 = c22 = t_ at failure. In this case equation (1.9) reduces to:

(F 1 +F 2) c +(F 11 +F22 +2F12) c = 1 (1.10)

Using this equation and the definitions for the strength coefficients the strength interaction term F12 can be

recovered:

'')(' 1)2]1 1- 1 1 + c_- SL tSLc + cF12 - 2t_2 - SL c STt STc STt STc
(1.11)

In order to ensure a closed failure surface, the following inequality must be satisfied:

1 1
-_ (F 11F22 )1/2 < F12 < _ (FllF22)1/2

Due to the limited amount of experimental data available, the lower limit of this range will be used in this
report, consistent with an analogy to the two-dimensional Von Mises criterion (ref. 14). These equations
define the boundary between safe and failure regions. Unlike the envelope defined by the Tsai-Hill failure
criterion, this failure envelope is continuous and smooth. This is due to the presence of linear terms in the
failure equation.

The envelopes defined by these two failure theories are compared graphically in figures 1-2 for a
typical carbon fiber/epoxy matrix composite.
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Figure 1-2: Tsai-Wu and Tsai-Hill Failure Theories[10]

-- Tsai-Hill

-- Tsai-Wu

Note that the scale of the c22 axis has been exaggerated to show the curvature. The failure envelope defined

by the Tsai-Wu failure theory is a continuous and smooth ellipse while the Tsai-Hill envelope is smooth

within each quadrant, and only continuous at the interface between quadrants. Both envelopes intercept the

_11 axis at SLt and -SLc, and the _22 axis at STt and -STc.

Application of these theories is limited to a deterministic analysis. Given a known set of stresses and
strengths, these failure criteria can predict failure or survival. For the reliability analysis involved in a design
problem, this is of little use. In most cases we are attempting to analyze the reliability of specimens of an
unknown, but statistically describable, strength. The only true method to determine the strength for a given
specimen would be to load that specimen to failure. This would give us an accurate measure of strength but
in so doing would destroy the specimen. The reliability method desired would use deterministic stresses (we
assume these can be accurately measured or calculated) with composite strengths following known dis-
tributions. These composite strengths would be obtained by testing specimens until the distributions of their
strengths could be predicted with a degree of confidence. The reliability methods discussed in this report will
use this information and the failure theories available to predict reliability.

Design Space/Integration Method

To fully understand the methods used for calculating reliability, the term "design space" must be
defined. This n-dimensional space (hyperspace), where n is the number of design variables, represents the
entire domain of possible values of the variables. A joint density function, which predicts the relative
probability of occurrence of a specific set of values for the design variables (coordinates in design space) is
defined over this entire domain. The next step is to determine which areas of the design space, representing
possible sets of design variables, will result in the failure of the system. Although we usually consider the
strengths as design variables and the applied stresses as known values, it is straight-forward to add the
stresses to the set of design variables.

In general, a failure criterion defines a multi-dimensional surface which divides the hyperspace into
two domains; a safe region and a failure region. To determine the reliability, the defined joint density

function is integrated over the safe region while conversely the probability of failure is the integral over the
failure region. The integral of a density function is termed a (cumulative) distribution function. For a single
variable system this analysis requires the integration of the single-variable density function over a defined
range. Problems with multiple variables require the more complex (multivariate) joint density function.
Consider the miltivariate case with n--2. If the variables x and y are both normally distributed, then their

joint density function decays continuously from the mean values (Px,lXy) and appears as a "pile of sand."

Figure 1-3 schematically shows this for two design variables (where t_x = t_y = t_, the standard deviation).
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Figure 1-3: 2D Joint Density Function
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For the failure criteria defined in the previous section, the design problem consists of three variables
for the Tsai-Hill failure criterion and five variables for the Tsai-Wu criterion. The joint density functions
associated with these variables are similar to the one shown in figure 1-3, but generalized to three or five
dimensions. The first step in the integration of these density functions is to define the bounding surface for

the safe region. Once this is accomplished, the density function is then integrated over the volume (area)
contained within the surface. The complexity of the typical bounding surface defined by these failure criteria
makes these integrals very difficult to evaluate in closed form. Fast Probability Integration (FPI) methods
rely on approximating the failure surface by a predetermined geometric form. These geometric forms are
chosen specifically to match analytical forms for which evaluation of the integral for the reliability is
practical. In choosing an appropriate approximating geometric form, a compromise between accuracy and
computational difficulty is made. Monte Carlo methods are also widely used, although they may require
many simulation trials using a random sampling method to evaluate the integral.

In this report we will consider the application of both FPI and Monte Carlo methods to the calculation
of reliability for composite materials under multiaxial loading. The composite materials considered are: a

unidirectional fiber, polymer matrix composite (PMC) of carbon (graphite)/epoxy, and a ceramic matrix
composite of silicon carbide (SiC)/reaction bonded silicon nitride (RBSN). The analysis will demonstrate
the sensitivity of the calculated reliability to parameters of the strength distributions. Both normal and non-
normal parameter distributions will be evaluated. In addition to this, a general comparison of the methods
will be performed.

2. RELIABILITY ANALYSIS TECHNIQUES

The process involved in performing an integration to evaluate a probability of failure can be viewed in
its simplest form as a design problem involving a single random variable. If the system involved has a
deterministic resistance (strength), x, and a random applied load, Y, then the reliability of the system is the
probability that the resistance is greater then the load, P(x > Y). Conversely the failure probability is the



probabilitythattheloadisgreaterthenthestrength,P (Y> x). Todeterminethisprobabilitythedistribution
of theloadmustbedetermined.First,defineaprobabilitydensityfunctionby:

fy(y) dy=P [y< Y < y+dy]

Once the probability density function for the load, fy(y), is known, an integration is performed over the

unsafe region (where the load is greater than the strength) to determine the probability of failure. This is
shown graphically in figure 2-1:

Failure

l.Ly X
Figure 2-1: Reliability Analysis for One Variable

v

Load Y

In the specific case of a Gaussian random variable the load Y can be "reduced" or transformed into a
standard normal variable (SNV), y, with a mean of zero and a standard deviation of one unit:

Y = _ty + yt_y (2.1a)

or

Y = (Y - _y )/_y (2.1b)

where _ty is the mean value of Y and t_y is the standard deviation of Y. This variable can then be used in the

previous reliability equation:

Reliability = P (x > lay + yOy) (2.2a)

or

Reliability = P ((x - lay)/Oy > y) (2.2b)

At this stage the variable on the right hand side of the inequality is a SNV and all the quantities on the left
are known. These known quantities can then be reduced to a single value defined as the "reliability
coefficient" or "reliability index," B. The reliability of the system can then be stated as:



Reliability= P(B> y) (2.3)

In the single variable case, this inequality defines a "safe region." This region is the set of values of y for
which the structure will not fail. The next step is to perform the integration implied by equation (2.3) over
the appropriate region. For this case the reliability of the system is equal to the probability that a SNV is less
than 8. This is easily determined from tables of the SNV Distribution or through calculations of any other

known distribution function. As before the probability of failure, Pf, is the complement of the reliability:

Pf = 1 - Reliability = 1 - P (13 > y) (2.4)

Note that the use of the words "reliability index" for 13 usually implies that the value x exceeds the mean of

Y (I.ty), [3 > 0, implying a reliability greater then 0.5. The equations (2.3) and (2.4) are, however, valid in any
circumstance.

This process is similar when the system involved has a random resistance (strength), X, in addition to

a random applied load, Y. The probability of failure, Pf, of the system is still the probability that the load is
greater then the resistance, P(Y > X). To determine this probability, the density and distribution of the load,

fy(y) and Fy(y), and of the resistance, fx(X) and Fx(x), must be determined. The distribution function F is
defined by:

Fy(y) = P [Y < y]

Y

= _ fy(z) dz
..oo

Once these probability functions are known, an integration is performed over the unsafe region (where the
load is greater than the strength) to determine the probability of failure. This is shown in figure 2.2:

I I

Y(Y) I

= I

I

a I fx (x)

0
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_lg Ovedap/Failure g X Or Y
Region x

Figure 2-2: Reliability Analysis for Two Variable System

The required probabilities can be formulated in the following manner:

Pf =P(X<Y)= Y_P(X<YIY=y) P(Y=y)
all y

(2.5)



For continuous variables the summation becomes:

OO

Pf= _ Fx(Y)f y(y)dy
0

An alternative expression is given by:

OO

,'i= f l,-  y(X)lfx(x)dx
0'

(2.6a)

(2.6b)

2.1 Design Variables

The two important characteristics that must be known about a design variable are how its values are
distributed and if it is statistically independent of the other design variables. The variable distributions fall
into two categories: normally and non-normally distributed. The majority of the techniques described in this

report are for normal variables only. Non-normal variables can be used directly in the simple Monte Carlo
method or approximated for use in the Rackwitz-Fiessler method; these special techniques will be briefly
considered. All integration methods in this report are limited to uncorrelated variables. With known
correlation factors between the variables, an orthogonal transformation can be performed on the variables
such that the new variables are uncorrelated. This transformation requires the following steps for normally
distributed variables. First the covariance matrix, IV], is determined. The elements of the covariance matrix

are defined as:

Vij = E[(Xi- l.ti) (Xj- _tj)] (2.7)

E[-] = expected value of [.]

where the entries represent the dependence (correlation) of one design variable on the other. Since IV] is

positive definite, there exists an orthogonal matrix, [T] such that [T][V][T] T is a diagonal matrix. These

diagonal elements are the eigenvalues of the covariance matrix. We can use this transformation matrix on
the variables to produce uncorrelated variables by the following method:

_Y= TX_ (2.8)

With these new variables the covariance matrix is diagonal and therefore the variables Y are uncorrelated.

The simulation methods can also be performed with correlated variables if the correlation is known. In our
application (composite materials) the material strength design variables may be correlated, but the nature of
this correlation is unknown. We shall assume that the variables of strength and applied load are uncorrelated.

2.2 Determining The Most Probable Point of Failure

The general case consists of a design problem involving multiple random variables, X (a vector of

dimension n). Note that X may include both applied loads and strength (or resistance) values. To determine

the probability of failure, a general criterion, g X(X(X(X(X(X(X(X(X(._, which is a function of the design variables, is required.
This criterion defines a surface between the "safe region," g (__.) < 0, and the "failure region," g (X_) > 0, and

is known as the "failure surface" g (X) = 0. To facilitate calculation, the variables are converted into

standard normal variables (SNV) by the following change of variables:



Xi=x io i +_ti i=lton (2.9a)

or

x i = (X i - _ti )/o i i=l to n (2.9b)

where I.ti is the mean value and o i is the standard deviation of the random variable X i, the ith design variable.

The failure surface is also transformed into a function of these reduced variables, giving g(x) -- 0. The

variables, x i, are normalized in units of standard deviation and measure the distance (in probability space)

from the mean. The shortest distance from the origin (mean values) to the failure surface is then determined

using a minimization technique. This distance is the reliability coefficient, 13. The closest approach point on
.

the failure surface, x , _s defined to be the most probable point (MPP) of failure since the density function for

the SNV's decreases monotonically with distance from the origin. Using this information, the reliability can
be calculated by employing a probability integration method which can provide a quick and accurate
solution.

2.3 Importance Factors

Once the MPP has been determined, the importance of considering the variability (randomness) of an
individual design variable can be determined. The importance is measured by the amount a variable's value

at the MPP, xi*, deviates from its mean, I,ti, in units of standard deviation. With reduced variables, this is

simply the absolute value of the magnitude Ixi*l. To compare the relative importance of the randomness in

the individual design variables, "importance factors", which are simply the direction cosines, are defined:

I i = (xi*/_) i = 1 to n (2.10)

This ratio Ii of the variable's value at the MPP to the reliability coefficient is always between one and

negative one. A variable whose randomness does not affect the design problem (has a low importance) will

not vary from its mean value; xi* -- 0. The more the importance factor deviates from this, the mean value,

the greater the importance of the variability. These importance factors can be used to simplify a design
problem. If a variable consistently has a factor showing low importance, then it may be possible to replace
this random variable with its mean value in the failure criterion. This would simplify the problem by reducing
its dimension. This is of minor value to the problems being analyzed in this report due to the small number
(3 or 5) of variables being employed, but can be important in problems of larger dimension (n).

2.4 Fast Probability Integration Techniques

Fast Probability Integration (FPI) methods use a variety of techniques to evaluate the measure of
probability space enclosed or bounded by a failure surface. This is accomplished by first determining the
most probable point (MPP) of failure in the reduced variable probability space. The reliability coefficient, 13,
is the distance from this point to the origin in units of standard deviation. For First Order methods, only this
information is required. From the knowledge of 13an approximation of the failure surface is made (a boundary
shape is assumed) and the integration performed. For ease of calculation only simple shapes are assumed. In
Second Order methods, additional information about the curvature of the failure surface at the MPP is

required. These Second Order methods use both the MPP and the curvature to provide more accurate

approximations.

2.4. I First Order Reliability Techniques
Design Problems with Linear (Planar) Failure Surfaces.win some situations the failure surface is

planar (linearly dependent on the design variables) and an exact solution can be calculated. In these
situations the equation for the failure surface has the following form:

10



g(X.X.X._= ot1X1+ a2X 2 ... + anX n - y (2.1 la)

or

n

g(X) = Z aiXi- T
i=l

(2.1 lb)

where ai are constant coefficients and T is a constant. The equation of the failure surface after the
normalization of variables becomes:

n n

Z aicix i = T - Zail-ti
i=l i=1

(2.12)

and the distance to the MPP, B, can be determined directly from the geometry:

n

Z a i txi- 7
i=l

B = (2.13)

For the applications being evaluated in this report a linear failure surface does not arise and is of minimal
interest. In the more general case the same steps are performed, but a more robust technique is required.

The Hasofer-Lind (I-I-L) Method.--This is the simplest First Order, Second Moment reliability
method used to evaluate probability. This technique approximates the failure surface (a hypersurface) by a
hyperplane tangent to the failure surface at the MPP. This is shown in Figure 2-3 for a system of two design
variables in SNV space:

X 1
Planar

I_ Approximation

I_ Failure Region

X 2

v

Figure 2-3: Hasofer-Lind FPI Technique

The plane can be defined by the first derivatives of the surface (at the MPP) and the MPP in terms of
reduced variables:

11



n

Z (xi - xi ) (3g(x-)/axi) = 0

i=l

(2.14)

First, however, the MPP point must be found. The usual analytical technique is to formulate a minimization
problem with the distance to the MPP (in units of standard deviation) as the function to be minimized:

Minimize: D(x) = i 2 (2.15)

Subject to: g(x) = 0

Note that the minimization problem 2.15 is formulated in terms of reduced variables. Once the problem is
formulated a minimization routine will solve for the point that offers the smallest value of D x(___),satisfying

g(x) = 0. The minimization solution for D_) gives the distance to the MPP, (B), as well as the importance

factors (Ii). The tangent plane defined by 2.14 may now be found. However, the B value can be used directly

to solve for the probability that the structure is within the safe region. By assuming the failure surface is
planar and using reduced (SNV) variables, the value of the density function integrated over the hypervolume
is found to be equal to the standard normal integral (distribution function) at B:

Reliability = _ (B) (2.16)

while the probability of failure is the complement:

Pf = 1 - • (6) = • (-6) (2.17)

where • is the standard normal distribution function. The evaluation of • either by computer or by

comparison with tables will determine the reliability or the probability of failure. Note that equations (2.16)
and (2.17), commensurate with figure 2-3, assume that reliability exceeds 50 percent; that is, that the origin
is not part of the failure region. If this is not the case, a similar equation may be used.

Hypersphere Centered at the Origin Approximation.raThe biggest potential problem with the H-L
method is in the planar approximation. In the case of a failure surface that is convex about the MPP (shown

in fig. 2-3), the surface is termed 'friendly' and the linear approximation is to some extent conservative. The
alternative is a concave or 'dangerous' curvature. This results in a liberal approximation and may
underestimate the actual probability of failure. This situation, for a system of two variables, is shown in

figure 2-4:

12



.... g(x_.)=O

X 1

_] Planar
Approximation

Failure Region

X 2

Figure 2-4: Hasofer-Lind with dangerous curvature

One response to this problem is to approximate the failure surface by a hypersphere centered at the origin.
This method is also categorized as first order in that it is based on the distance to the MPP only. This

approximation is shown in figure 2-5:

Figure 2-5: Origin Centered Hypersphere Approximation

The hypersphere is defined solely by the distance to the MPP, B:

n

*i 2- B2 = 0
i=l

(2.18)

13



Thisapproximationis extremelyconservativein thatit enclosesthesmallestpossiblevolumein thesafe
region,basedonthecalculatedvalueof 6. ByassumingthefailuresurfaceissphericalandbyusingSNV's,
thesumof thesquares(]_xi2)hasachi-squareddistributionwithndegreesof freedom.Thereforethevalue
of theintegrationoverthehypervolumecanbeobtainedfromthechi-squareddistributionwithndegreesof
freedom:

Reliability= Xn2(B2) (2.19)

whiletheprobabilityof failureis theconverse:

Pf = 1- Xn2 (B2) (2.20)

This probability can be determined by computer or by the use of tables.
Raekwitz-Fiessler Method.BWhen the design variables are not normal variables, the standard

normalization definition {x = (X-I.t)/c } may still be used. There is no assurance, however, that the location

of the closest point to the origin will be the most probable point. This difficulty arises from the fact that the
decay in probability density may be unequal along the different design variable axes. If we can arrange for
the probability description at the closest approach point to resemble (be locally equivalent to) a normal
distribution, we may be able to force the closest point to be the MPP. The reliability would then be
evaluated from the normal distribution. This is the rationale behind the Rackwitz-Fiessler method (ref. 12),

which requires an iterative solution as outlined below.
Let the design variables Xi have any non-normal distribution. On the initial iteration, instead of

normalizing the variables in the usual fashion, convert the minimization problem into a function of the
original variables.

Minimize: D(X) = (Xi- I'ti )/oi (2.21)

Subject to: g(X) = 0

where li i and (ri are the means and standard deviations of the non-normal variables (assumed known) and

g(2_) is the failure criterion in the original variables. This problem is mathematically equivalent to the
minimization problem mentioned previously. The only difference is that the normalization of the variables is
done within this minimization problem while in the previous problem the variables were normalized
externally. The next step is to match the density and distribution functions of a similar normal distribution. A

new distribution, with mean (_ti') and standard deviation (_i'), is obtained for each variable, Xi, by matching

the original distribution and density function at the closest approach point, X* (which is equivalent to x* in
the normalized coordinate system), with those of a normal variable;

((Xi* - _ti')/_i') = F (Xi*) (2.22)

¢ ((Xi* - _ti')/ci') = f (Xi*) (2.23)

where _(.) is the standard normal distribution function and _(.) is the standard normal density function. To

determine the new parameters (means and standard deviations) of the equivalent normal distributions

equations (2.22) and (2.23) must be inverted to yield the following equalities.

(_i' =_ {_- 1 [F(Xi*)] }/f(Xi*) (2.24)

_ti' = Xi* - _i' _- 1 [F(Xi*)I (2.25)
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Thenewvaluesof themeansandstandarddeviationsfoundbyequations(2.24)and(2.25)areinsertedin the
minimizationproblem2.21,andtheclosestpointX* is found. These two steps: solving the minimization

problem and determining equivalent normal distributions, are repeated until a convergence criterion (either
absolute or relative) is satisfied. The distance calculated is then used in the planar or hyperspherical

approximation of the failure surface outlined above. From these approximations the reliability (or probability
of failure) can be determined.

2.4.2 Second Order Reliability Techniques
As in the first order methods, the second order methods approximate the hypervolume of the failure

region by a simpler volume over which the probability integration may be more easily evaluated. This is
equivalent to determining a simpler bounding surface which approximates the true surface. To improve the
approximation of the failure surface beyond the level employed in the first order methods, additional
information about the failure surface is required. In the second order methods the approximation relies on the
curvature of the surface at the most probable point of failure in addition to the distance to that point. With
this additional information, a more correct approximation surface can be used with confidence. The only

limit to the shape chosen is the ability to match it to a known closed form expression for probability.
The General Quadratic Form Solution.--For implementation of any of the second order methods, the

failure surface must be twice differentiable in the neighborhood of the checking point in the normalized

coordinate system. Once the failure surface has been converted to the normalized coordinate system, the
next step is to expand the failure surface, g(x) = 0, into a second order Taylor series about the checking

point, x* (ref. 5):

n

_'_ Og(x)

g(x) = g(x*) + ,_ Ox i Ix=x*

i=l

r n1 '_ _)2g(x)

(xi-xi*)+ Ix=x.
I_ i=l

(x i - xi*) 2

n-I

+2Y_,
i=1

n O2g(x),.v_ Iz: =X* ]X _Xi_. j Ir (xi- xi*(xj-xj*) =0
j=i+l

(2.26a)

or in matrix notation after rearrangements:

g(x) = (x- x*) T- [G x] • (x- x*) + 2.{gx}T-(x - x*) + 2.g(3.*) = 0 (2.26b)

where [Gx] is a matrix of second and mixed derivatives and {gx} is a vector of first derivatives with the

following form:

F _2---g(x) c_2g(x) _2g(x'x-) 1
_)Xl2 _)Xl_)X2 "'" _)Xl_)Xn

__2g(x_) O2g(x_)

[Gx] =l ox2oxl _x22 ...... I

L............J_2g(x) O2g(x)

OXnOXl ...... OXn2

(2.27)
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{ Og(x_) 0g(x_) Og(x)] T{gx} = -_Xl 0x2 "'" 0XnS
(2.28)

By a process of linear transformations equation (2.26b) can be converted to one of two standard forms in a
new coordinate system (defined as the z-system). These two possible transformed quadratic forms are
defined by equations (2.29) and (2.30).

n

_'i (zi- 8i)2 = Cl

i=l

(2.29)

m n

ki (zi- 8i) 2 + Y_ (ci- zi) = C2
i=l i--m+l

(2.30)

where _,i are eigenvalues of the [G x] matrix, the 8i terms are the noncentralities in the z-system, and the

constants C1, C2 and ci (i--1,n) are dependent on the linear transformation. The form these equations define

is dependent upon the signs of the eigenvalue-to-constant ratios, _,i/C1 and _,i/C2, for equations (2.29) and

(2.30) respectively. If all ratios are greater than zero, the quadratic is positive definite. In the case of

equation (2.29) this defines an ellipsoid centered at (51, 82,..,8n) with semi-axes [(CI/_,I) 1/2, (C1/_,2) 1/2 .....

(C1/_n)l/2]. If any of the eigenvalues (or ratios) are zero, the equations represent cylindrical forms. In the

case of eigenvalues with differing signs, the quadratic is indefinite and can have a variety of forms.
Because the variables in the z-system are SNV's, new variables can be defined

W: _,i(zi-Si) 2

i=l

(2.31)

m n

V -- Y__ _i (zi- 8i) 2 + Y_ (ci- zi) (2.32)
i=l i=m+l

where the variable W is a combination of noncentral chi-squared distributed variables only, while V contains
a linear combination of normally distributed variables. The distribution function of W is the probablistic
content of a normal distribution where the spherical region is defined by equation (2.29). The distribution of
variable V can also be defined in a similar fashion by equation (2.30), although the shape of the region is

dependent upon the constants C2 and ci (i=l,n). From the definition of the safe domain (in either the initial

x-system or in the transformed z-system) it can be shown that the probability of failure is estimated by

Pf = P(W > C1) = 1 - Fw(C1) (2.33)

Pf = P(V > C2) = 1 - Fv(C2) (2.34)

where Fw and Fv are the probability distribution functions of W and V respectively. A variety of expressions

have been derived for use in estimating these density functions. These approximations require complicated

integrations and as a result have limited applicability in the study of reliability. Two simpler forms for the
quadratic approximation have probability distributions that are relatively easy to calculate and will be
evaluated in detail in the following sections.

Special Forms with Predetermined Principal Axes.rain addition to their use in the exact curvature
solution, the curvatures at the checking point or MPP x* can be used to approximate the surface with a

predetermined shape. This results in a substantial savings in computation time but decreases the accuracy of
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theresults.Theconsequenceof theseapproximationscanonlybeevaluatedwhencomparedto the'exact'
solution.

Thefirststepinperformingthismethodis todeterminetheMPPof failureaspreviouslydescribed.
Thenextstepis tocalculatethecurvaturesof thefailuresurfaceat thispoint,withaneyetowards
employingasingleresultantcuvature.Thisis accomplishedbyusingthedirectionof theprincipalaxis,
whichisaunitvectorfromtheorigintotheMPP.Thecoordinatesystem(x-system)isrotatedinsuchaway
astoallowtheprincipalaxis(nthaxis)toliealongthepositionvectorfromtheorigintotheMPP.Themost
probablepoint isconvertedfrom(Xl*,x2*..... Xn*),intheoldcoordinatesystem,to (0,0..... B),in the
newcoordinatesystem.Thisnewsystemisdefinedasthey-system.Thisorthogonalrotationrequiresthe
transformationmatrix,T,where:

X = T_Y. (2.35)

This is shown in figure 2-6:

X
yn=Zn n i

g(_=o

Yi

Figure 2-6: Rotated Coordinate Systems

Since we have all of the information about the failure surface in the unrotated coordinate system, the inverse

of this transformation is of greater interest:

Y : T- 1X = TTx (2.36)

The inverse and transpose are equal since T is an orthogonal matrix composed of unit vectors. To
determine this matrix we use the MPP whose position is known in both coordinate systems. From this the nth

row of the T T matrix can be determined:

T Tni = xi*/B (2.37)

Since the (n- 1) secondary axes in the Y coordinate system are arbitrary, but must be perpendicular to each

other and lie in the hyperplane normal to the nth axis, the rows of the matrix have similar requirements.
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Therowsmustrepresentunitvectorswhichareperpendiculartoeachother.Thefhststepisto solveforrow
(n-l). Thefirstn-I positions(inthen-1 row)areassumedto beequaltoone.Then,usingtheperpen-
dicularityrequirement,thenthelementof row(n-1) issolvedforbytakingthedotproductof row(n-1)with
row(n)andsettingtheresultto zero.Thisrequiressolvingonelinearequationwithoneunknown(elementn
ofrow(n-1)). Then-1 vectoris thennormalized.Thecomputedvectorisbothaunitvectorandperpen-
diculartothenthrow. Thisprocessis thenrepeatedforthenextlowestrow,(n-2). In thiscasethelasttwo
positions(n-1andn)arenon-arbitraryandmustbesolvedforbytakingdotproductswiththen- 1andnth
rows.Thisrequiressolvingtwolinearequationswithtwounknowns.Thesetwostepsarerepeatedforeach
rowuntiltheentirematrixis complete.

ThesecondorderandmixedderivativesattheMPParecalculatedin therotatedcoordinatesystem.
Thiscanbeaccomplishedin twoways.Thefirstis to usethematrixtotransformthevariablesx into the new

coordinate system v, then transform the failure criterion using these variables, and finally take the derivatives

in the new system. The second method is to use the transformation matrix to determine the values of the
derivatives in the rotated (y_)coordinate system from those calculated in the unrotated (x) coordinate system.

This requires the following calculations:

32g(y_) O2g(x) _ T

Gyi, j, - OyiO----_j[y, - _x ,l i,p T _,q (2.38)

3g(_) Og(x) TT
gYi'- _Yi ]Y* - _ _x* i'p

(2.39)

where [Gy] is the matrix of second and mixed derivatives, {gy} is the vector of first derivatives in the rotated

y-system and 2L* = TTx *.

The coordinate system then undergoes an additional rotation with the Yn = Zn axis fixed, such that the

mixed derivatives go to zero in the z coordiante system. This is accomplished by performing an orthogonal
transformation like the coordinate rotation described in Section 2.1. This final coordinate system is defined

as the z-system, and its curvatures are the "principal" curvatures. The first and second derivatives ({gz} and

[Gz] ) are then calculated in the z-system using either of the two methods mentioned above. Using this matrix

and vector, the curvature of the surface with respect to the variables in the final rotated coordinate system (_O

can be calculated. For an n-dimensional surface there are (n-1) principal curvatures, K i, calculated. This is

accomplished by solving for the roots of the characteristic equation in the y-system:

det (g-_n [Gy] - K ° I) = 0
(2.40)

where gYn is the first derivative with respect to Yn' solution for K will give the vector of curvatures, [I] is the

(n-l) rank identity matrix and all derivatives are performed at the MPP. In the z-system the curvatures can

be determined directly from the ratio of derivatives since the [Gz] matrix is diagonal:

Gzii
K i -

gz n
i =1 to n-1 NO SUM (2.41)

These curvatures are identical to those calculated with equation (2.40). It is important to note that although

use of the y- and z-systems simplify the calculation of the curvatures, these curvatures can not be identified
with the original design variables due to the rotations performed. In both coordinate systems (y and z) a

"dangerous" curvature (concave towards the origin) is defined by a negative second derivative while a "safe"
curvature (concave away from the origin) is defined by a second derivative with a positive value. The first
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derivativewithrespectto theprimary(ornth)axis,gYn'isnegativebydefinition,sinceit definesthe
boundarybetweenthe"safe"region(wherethefailurecriterionispositive)andthe"failure"region(where
thefailurecriterionis negative).Takingthesetwoconditionsintoaccountthesignof thecurvatureis
oppositeto thesignof thesecondderivativeusedtocalculateit; a"dangerous"curvatureis positiveanda
"safe"curvatureis negative.Theradiusof curvature,Ri, is thereciprocalof thecurvature:

Ri= 1/Ki i=l ton-1 (2.42)

Non-Central Hypersphere Approximation.raThe first geometric form to be utilized as an
approximation is the non-central hypersphere. Unlike the hypersphere used in the first order method, this
hypersphere is not centered at the origin. This is shown in figure 2-7:

,(

,(

,(
<
,( \\
,( ',\IX

_ r,,,
\\

\\

\\

g(_=o ",'"
Hypersphere

-_ Approximation

Xl _ Failure Region

Figure 2-7: Noncentral Hypersphere Approximation

To determine the reliability one of the n- 1 radii of curvature values must be chosen, since a hypersphere only

uses one radius. The choice of radius depends on the nature of the approximation desired. For this

approximation only the positive and finite radii are considered; this eliminates any curvatures which are
negative ("safe") or zero (locally linear). If a conservative result is desired, the smallest radius, and thus the
smallest hypersphere, is chosen. The opposite is true if a liberal result is desired. In addition to these
choices, the average of the curvatures can be used. Once the radius is chosen, the equation of the

hypersphere in the z-system becomes:

n-1

+ 2
R 2=[z n-(B- R)] 2 _zi

i=l

(2.43)
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ThishyperspherehasradiusRandcenteratthepoint(0,0..... 13- R), in the z-system. If the z variables are
standard normal variables, the equation (2.43) is noncentrally chi- squared distributed with a noncentrality

parameter _5 = [R - 1312. This is used for reliability analysis:

and

2

Reliability = 2 n,8 (R2)

2

Pf= 1 - _ n,5 (R2)

This distribution can be calculated from a known distribution equation (reference 11).
Rotational Parabaloid Approximation.--This is the other quadratic geometric form used in this

report to approximate the hypervolume contained by the failure surface. This is shown in figure 2-8:

(2.44)

(2.45)

Figure 2-8: Rotational Parabaloid Approximation

The same choice of an appropriate radius of curvature must be made - either the minimum, maximum or
average. As before, this choice is made from the set of positive and finite radii. Once the radius is chosen,

the equation of the rotational parabaloid, in the z-system, becomes:

n-1

2-_ _z_+(Zn-13)=0 (2.46)

i=l

Since the z variables are SNV's, the first term in the equation is chi-squared distributed while the second

term is normally distributed. Summing these two terms, the probability of failure becomes the probability of
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a chi- squared variable convoluted with a noncentral normal variable's being greater than zero.
the following equation:

oo

PY=f 'I'[- B]fX2n-1 (t)dt

0

This results in

(2.47)

in which fx 2 is the density of a chi- squared variable with v degrees of freedom and • is the SNV distribution
V

function. In this case the density function has only n-1 degrees of freedom due to the form of the previous
equation. Evaluating the failure probability equation (2.47) requires numerical quadrature of the specified
distribution and density functions.

The two presented quadratic approximations use equations based on those found in the article by
Fiessler, Neumann, and Rackwitz (ref. 5). The specific form of the equations varies significantly from those
referenced, however. To duplicate the results found in this report the modified equations (2.43), (2.46) &
(2.47), as defined above, were required. The form of these equations in the article (ref. 5) are as follows:

n-I

R2= £ z_ + [zn - (R + 13)]2 (2.43')

i=l

n-I

2R z i - (Zn - g) = 0 (2.46')
i=l

oo

 =fo[ 1--_t-B] f 2 (t)dtXn_1
0

(2.47')

In addition to these equations the noncentrality parameter was defined as 8 = [R + B]2, and the center of the

hypersphere was located at (0, 0 ..... 0, R + 13). The majority of discrepancies regarded changes in sign.
These differences may be caused by a difference in sign convention or in the definition of the normalized
variables. All attempts to use these primed equations as stated in the two approximations (Non-Central
Hypersphere and Rotational Paraboloid) gave incorrect results.

2.5 Monte Carlo Methods

Simple Monte Carlo Technique.--This is the simplest technique available to analyze a design

problem and calculate Pf. It consists of sampling a number of random points, where the distribution of
sample points is controlled by the distribution of the design variables. In each iteration, a value is generated
for each design variable. These values are then tested in the failure criterion, g(x_.). The results of this test

are consistent with our previous definition:

g(a) < 0:

g(x_)= 0:

g(_) > 0:

Point falls within failure domain
Point falls on the failure surface

Point falls within safe domain
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Thisisrepeated,withtheresultsof eachsimulationbeingrecorded.Onceasufficientnumberof iterationsis
completed,theprobabilityof failureiscalculatedin thefollowingmanner:

pf= Number of Failure Simulations _ Nf
Total Number of Simulations N

(2.48)

This is a very simple approach with only one serious drawback. As the reliability increases, the probability of

failure decreases, and the total number of simulations required for an accurate estimate of Pf increases. For

engineering design problems it is not unusual to have acceptable Pf values to be as low as lx 10-6 or

lx 10 -9. For reasonable accuracy, a minimum of 20 to 30 sample failures are generally required, with a

commensurate requirement on the total number of samples of say (20/Pf). This is extremely costly in terms

of computation time.
Efficient Sampling Technique.--By using a portion of the FPI methods outlined above, a more

efficient sampling technique has been developed to address the inherent inefficiency of the basic Monte
Carlo technique. In an attempt to reduce the number of samples, this technique is designed to generate
variables in a limited sampling volume that follows the original distribution (within that limited sampling
volume). As in the FPI technique outlined above, the first step is to determine the MPP and the associated 6.
Since this point is defined as the closest approach of the failure surface and the reduced variables are all
SNV's, it follows that any point generated which lies at a distance (from the origin) less then 6 would fall
within the safe domain. This n-dimensional sphere, of radius 6 and centered at the origin, termed the B-

sphere, can then be considered a portion of the safe domain and removed from the sampling domain.
Removal of this domain gives a substantial decrease in the number of samples required, since most points

generated would otherwise fall near the origin within the B-sphere. This is shown in figure 2-9:

Failurexx,x_,__x_x_x_

_, Domain_ I "%x_'_"_

Sampling Domain

B Sphere

Figure 2-9: Limited Sampling Domain

The probability content contained within the B-sphere is calculated by using the formula for the cumulative
chi-squared distribution with n degrees of freedom. By excluding the B-sphere from the sampling domain a
substantial improvement in the efficiency is obtained.

To explain the steps used in this probability of failure estimator, the sampling domain must be split
into the two portions defined by Ixl < 6 and Ixl > 6. The probability of failure can then be shown in the

following equation:

Pf = Pr (gx(__.)< o) (2.49)
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ConsiderthetwodomainsusingtheTheoremofTotalProbability:

Pf= Pig(x_)< 0l, J -< 13}Pllxl _<13} + P{g(x) < O[Ixl > 13} • P{Ixl > 13} (2.50)

Instead of using the conditions based on Ixl and 13,we can express them equivalently using Ixl2 and 132for use

with the chi- squared distribution:

Pf= P{g(x) < 0 I Ix_l2 < 132} - P{Ixl 2 < 132} + P{g(x_) < 0 I lxl2 > 132} - P{Ixl 2 > 132} (2.51)

Replacing the various probability terms with their known distributions and values results in:

2
Pf= 0. Z2n (g 2) + P{g(x) < 0 I lxl2 > g2 } • (1- Zn (132)) (2.52)

In the first term the first part is replaced by zero due to lack of possible failures within the 13-sphere while the

second term is the probability the point is within 13-sphere. In the second term the second part is the
probability that a point lies outside of the BB-sphere. The next step is to determine the truncated probability
density function, ftr (x), given that Ixl > 13:

Ktr" f (x)ftr (x) = 0

if Ixl > 13
if Ixl -< 13 (2.53)

Ktr is a constant used to scale (normalize) the distribution, defined as

Ktr = 1/(1- X2 (132))

such that the integral of the density function over the applicable domain equals one:

(2.54)

J ftr(X) dx = 1
Ixl > 13

(2.55)

The final probability term can then be replaced by this truncated density function:

P{g(x) < 0 I lxl > 13}

where I(x) denotes the indicator variable defined as

= ; ftr (_) dx
g(x) < 0

= ; I(x)- ftr (x) dx
all x

(2.56)

(2.57)

1I (3.) = 0
if x is in the failure region

if x is in the safe region
(2.58)
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Theprobabilityof failurebecomes:

P{g(x)<0 11x__l> 6} = Eftr [ Ix(x(x(x(_] (2.59)

where Eft r [ I_) ] denotes the expected value of I(x) with respect to the fir - distribution.

equations (2.52) and (2.59) the probability of failure is:

Pf= (1- X2n(132))Eft r [I(x)]

By combining

(2.60)

Like the simple Monte Carlo method, the estimated or inferred value of the indicator variable is:

1 N Nf

Eft r [I_)] = _ j_lI(X)-= N
(2.61)

where N is the total number of simulations and Nf is the number of failure simulations. These simulations are

generated according to the (truncated) fir - distribution. This is accomplished by converting the basic

variables (X1, X2 ..... Xn) to polar coordinates (R, 191, t92 ..... On-1) (ref. 9), where (O1,192 ..... On-1) defines

the direction of X while R defines the length of X in x-space. If the Xi's are standard normal variables it can

be shown that the distance R is independent of the direction (defined by (191, G2 ..... 19n- 1)) (ref. 9 pg. 18.)

These simulations are realized by sampling a random direction unit vector _ = (oq, o_2 ..... C_n_l). This

requires the sampling of n- 1 dummy SNV's, Y1, Y2 ..... Yn- 1, which are then normalized to a unit vector _ in

the following manner

Yi
_i- IYI i=l to (n-l) (2.62)

where IYI is the length of the vector formed by the n- 1 normal variables

IYI = f _ Y
(2.63)

This method is used to generate the (n-1) variables 0i which define the direction. The length variable, R, is

generated following a truncated chi-squared distribution. This can be accomplished by using realizations of a
chi-squared random variable and then discarding the values which do not fall within the reduced sampling

domain (R > [$). Due to the rapid decline of the chi- squared density function (see figure 2-10A) a majority

of the simulations would be discarded, which is highly inefficient. An alternate method proposed by Harbitz

(ref. 6) involves the following variable transformation:

U = exp I-1R21 (2.64)

where o_ is a constant greater than two and dependent upon 13. The sampling domain for U, [Ul, u2],

corresponding to the sampling domain for R, [rl, r2], where r2 = (rl + 3) (beyond rl + 3 the chi-squared

density function is assumed relatively insignificant), is given by:
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Eulo2 :[exp(- ,22)oxp(  265,
The density function for u is then proportional to g(u), where:

g(u) = [-ln(u)] (n/2)- 1 u(C_/2)- 1, (2.66)

This is a more uniform density function (see figure 2-10B) and therefore offers a more efficient sampling
method.

r 1

i IIb,..._

A

I h,...._
|y

Ul B u2

Figure 2-10: Sampling Density Function

In practice the following two procedures are considered for generating a variable which follows the
distribution of equation (2.66) and shown in figure 2-10B:

Procedure 1: For large values of 13 or a small number of variables n, generate two stochastically

independent rectangularly distributed (uniform density function) variables:

U = Rect [Ul, u2]

G = Rect [0, g(umax)] (2.67)

where

Umax exp (-
(2.68)

Sample random values of U and G until G < g(U). This "acceptance sampling" is required to generate
variables which follow the desired distribution. The corresponding R-value used in the simulation is then:

R=_-otlnU (2.69)
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Thisprocedureisrepeateduntilthedesirednumberof simulationsisgeneratedbasedontherequirednumber
of samplefailures.

Procedure2: Forsmallvaluesof 13andlargen(numberof variables),generateRbyoneof the
followingtwoequationsdependinguponif thenumberof variablesisoddoreven:

['n/2 ]
Forevenn: R=- 2 ln_il-lvi_L--I J (2.70)

f(n- 1)/21

Foroddn: R=-2In I i=I=Ivil+ x2 (2.71)

whereVi areindependentunitrectangularvariablesandX isastandardnormalrandomvariable.This
procedureisrepeateduntil thedesirednumberof simulationsisgenerated.

If wenowreturntothereliabilityequation(2.60),aprobabilityof failureestimate,Pf, isgivenby:

* 2 Nf
Pf = (1- Zn (62)) • _- (2.72)

When comparing this method to the simple Monte Carlo method, we see a substantial increase in efficiency.
This can be shown by the following comparison of the total number of simulations required: for the simple

Monte Carlo method N = 10/Pf (assuming that 10 failed simulations gives an accurate estimate) while for

the Importance Sampling method N = 10 - Pf/(1 - ;¢z (B2)). This means that for a design problem with

Pf= 1.0x 10-5 and B = 3.5, N =100 for the Improved Sampling compared to N = lxl06 for the simple Monte
Carlo method. In contrast to the FPI methods proposed earlier, this method does not require any prior

knowledge of the shape of the failure surface.

3. RESULTS & DISCUSSION

There are three areas of reliability analysis being evaluated in this chapter. These will be covered in
Sections 3.1, 3.2 and 3.3. As a standard multiaxial stress state, we shall consider the loading of an "off-axis"

specimen with orientation angle, O. The stress state is given by a reduction of equations (1.1), (1.2) and

(1.3):

t,,] rco, o 1
_22 / = J sin20 _ _xx

12 J l-sinOcosOJ

(3.1)

The first portion of Section 3.1 will compare results obtained by using the techniques discussed in Chapter 2
for design problems with normally distributed strengths. Accuracy of the individual methods will be

evaluated by comparing calculated reliability estimates. These comparisons will be performed over a range
of orientation angles and applied stresses. In addition to accuracy, the other areas of comparison will include

computational speed, intrinsic conservatism of the methods, and degree of difficulty in implementation. This
comparison will be designed to demonstrate the methodology involved, and as such will not be exhaustive in
its presentation. The second portion of Section 3.1 will evaluate the Rackwitz-Fiessler method. This is the
basic method available to analyze systems with non-normally distributed design variables. This evaluation
will include all areas of comparison discussed in the first portion. Section 3.2 will evaluate the sensitivity of
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theprobabilityof failureestimatestouncertaintiesin theoriginalstrengthdistributionparameters.The
sensitivitystudywill beperformedinavarietyof caseswithchangesinparameters,orientationanglesand
appliedstresses.Dueto thedifficultyindeterminingaclosedformsolution(withthenotableexceptionsof

laminaewith0° and90° orientationangles)anumericalsensitivitystudywill beemployed.Asin the
previoussection,thisanalysiswill bemoreconcernedwithdemonstratingthemethodologythanin providing
exhaustivedetail.Thefinalsection(3.3)will provideanddiscusstheimportancefactorsfoundduringthe
reliabilityanalysis.

Confirmationof PublishedSolutions.--Totestthecomputationaltechniquesusedinperforming
thesemethods,aseriesof publisheddesignproblemswasduplicated.FortheHasofer-Lindmethod,the
problemduplicatedwasanalyzingcompositefailureusingHashin'sCriterionwiththeappliedstressesasthe
randomvariables[ref. 2]. These results of the published analyses gave relatively low reliability (on the order
of 75%) and were not compared to results calculated with other methods. The results found from our analysis
did not match the published results. Consultation with the principal author (Elishakoff) eventually led to the
determination of the errors in these results. These errors were caused by a change of units which took place

between the original problem [ref. 3] and the journal article form. The original problem was posed in units of
MSI which were converted in the published problem to GPa (with a conversion factor of 6.895). This

conversion was not performed correctly on the standard deviation values (in [ref. 2]: standard deviation of all
stress distributions = 1 GPa, correct value: 6.895 GPa). Once this problem was corrected, the published

results and our calculated results matched nearly exactly.
Additional analysis of other design problems were also duplicated (refs. 1, 4 and 5). For the Rackwitz-

Fiessler method the problem duplicated involved flexure of a steel beam; see Ang & Tang (ref. 1). The three
random variables had lognormal or asymptotic extreme-value distributions. Our analysis of this design
problem offered results similar to the published results; however, more iterations were required. This is likely
due to Ang & Tang's use of an analysis technique which was tailored to design problems having lognormal
and asymptotical distributed variables, while our approach allowed for analysis of design problems containing
variables with any nonnormal distribution.

The second order methods (both the Noncentral Hypersphere and Rotational Parabaloid) were tested

using analysis of a bar under a series of tensile loads (ref. 5). This design problem was analyzed by all of the
FPI methods and the results were compared with "exact" values calculated with the Monte Carlo method.
When this design problem was analyzed using second order methods, extremely accurate estimates were
possible. This was attributed to two reasons. Because this was only a two dimensional design problem (two
variables), there was only a single radius of curvature involved; thus the radius used in the analysis was the
exact radius at the MPP. Also the radius of curvature was of the same order as the reliability coefficient.

This resulted in a failure surface which had a relatively extreme dangerous curvature and limited the surface

to shapes which are close to the approximations. The Importance Sampling Method was tested using a
design problem with a failure surface which, in reduced variables, was a rotational parabaloid (ref. 6). This
example offered both calculated probabilities of failure and information on the efficiency of the method. The
probability of failure results analyzed with our computational techniques were close to the published results.
The deviations between the two sets of results are likely due to the small number of simulations used (N =

100). The portion of this example involving efficiency did not match well with the published results,
however. It was determined that the matrix of or-values found in table 2 of reference 6 were transposed (i.e.,

the o_-values found in the first row of the table actually belong in the first column). Analysis of these

problems using the corrected o_-values offered efficiency results which matched those published.

3.1 Comparison of Techniques

Aceuraey.--The details of the comparison of lamina strength results using various techniques can be
seen in tables 3-1 to 3-3. Each table consists of the reliability analysis of a lamina with a specific orientation

under a series of axially applied stresses. At each stress level the reliability is analyzed by the basic Monte
Carlo and Efficient Sampling Techniques, as well as four FPI methods: the Hasofer-Lind Method (Planar

Approximation), the Central Hypersphere Approximation, the Non-Central Hypersphere Approximation and
the Rotational Parabaloid Approximation. These results are compared to the reliability estimate calculated
by the Monte Carlo method, which is believed to be the most accurate, provided sufficient trials can be
realized. The number of simulations performed by the Monte Carlo method is chosen to give an extremely

accurate (defined "exact") estimate. This is done by requiring the number of simulated failures to be larger

than 50; this requires 50/Pf simulations.
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The material used in these simulations is a unidirectional fiber, polymer matrix composite (PMC)

consisting of carbon (graphite) fibers in an epoxy matrix. The nominal or mean values for the five strength
properties based on typical values are as follows:

Longitudinal Tensile Strength: 1400 MPa
Longitudinal Compressive Strength: 1200 MPa
Transverse Tensile Strength: 70 MPa
Transverse Compressive Strength: 140 MPa
In-Plane Shear Strength: 70 MPa

The distribution of these properties will be assumed to follow a normal distribution with a coefficient of
variation (standard deviation/mean) of 0.10. For the second order approximations (the Non Central

Hypersphere and the Rotational Parabaloid Approximations) a series of radii are calculated. The infinite
radii are eliminated. The second order methods chosen are incapable of analyzing safe curvatures (Ki < 0)

so these are also discarded. From the remaining curvatures the largest curvature (smallest radius of
curvature) is chosen. Typically there exists only one positive and finite (defined "dangerous") curvature for
cases analyzed by the the Tsai-Hill and Tsai-Wu failure criteria. One zero value curvature (R = _) was
usually discarded for Tsai-Hill cases, while the set of discarded curvatures for Tsai-Wu cases usually
consisted of one zero value and two "safe" curvatures (K i < 0).

Table 3-1: Reliability Analysis of a 30 ° Gr/Ep Composite

Failure Criterion:

Applied Stress

(MPa)
MPP-Normalized

(x*)
SLt

SLc

STt

STc

SLTs

Reliability

Index [_

Radius of
Curvature R

Probability of
Failure:

Ctl. Hypersph.:
Planar

Approximation

70

-0.0010

-0.173

-5.52

5.52

1190

Tsai - Hill l[ Tsai - Wu

120 70 9090

-0.0016

--0.310

-4.09

4.10

570

0.0002

-0.363

-1.70

1.74

225

-0.0565

0.0690

--0.455

0.140

-5.28

5.30

440

-0.0705

0.0909

-0.630

0.165

-3.69

3.74

235

120

-0.0403

0.0578

-0.390

0.0906

-1.12

1.19

115

108.e-8 75.8e-5 38.9e-2 3.52e-5 1.55e-2 9.23e-1

1.67e-8 2.02e-5 4.13e-2 5.83e-8 9.04e-5 1.17e-1

Non Central

Hypersphere 1.78e°8 2.29e-5 4.96e-2 7.57e-8 13.7e-5 1.63e-1
Rotational
Parabaloid 1.67e-8 2.02e-5 4.13e-2 5.97e-8 9.35e-5 1.21e-I

5.59e-8

"Exact"
Value

1.61e-8

4.13e-2 9.73e-5

9.77e-54.72e-2
Importance
Sampling

2.02e-5

2.10e-5

1.33e-1

1.27e-1

From table 3-1 it can be seen that the various FPI methods, with the exception of the central

hypersphere, predict approximately the same probability of failure. This is due to the large radii of curvature
found in all cases, which force all the models to behave like a linear (planar) approximation. It is only at the

highest stress levels, where the radius of curvature is at its lowest value, that these predictions differ
significantly. In all cases the central hypersphere approximation differs substantially from the "exact" value
and thus is of interest only insofar as it offers a lower limit on reliability. In all six of the cases shown in

28



table3-1(threeloadswithtwocriteria)onlyonecurvature(percase)waspositiveandfiniteor in reliability
terms"dangerous".Thiscurvaturewaschosenforthesecondorderevaluation.Asmentionedpreviously,by
choosingthelargestcurvature(andthusthesmallestradius),theapproximationbecomesconservative.
IncludingthiscurvatureappearstohaveaslighteffectontheTsal-WuanalysiswhiletheTsai-Hillanalysisis
virtuallyunchanged.In theTsai-Hillanalysisonlyonecurvatureis ignored;usingtheTsai-Wuanalysis,
threecurvaturesareignoredsincetheyareeitherzeroornegative.Theseextracurvaturescandescribea
surfacethatis significantlydifferentthantheonedefinedbythesingle"dangerous"curvature,andcaution
mustbeused.TheresultscalculatedbytheImportanceSamplingmethoddonotdependuponcurvatureand
thusareunaffectedbythisconcern.TheNon-CentralHypersphereapproximationlike thecentral
hypersphere,tendstobeconservative,butismuchmoreaccurate.Duetotheflatnessof thesurfaceat the
MPP,theprobabilityof failurecalculatedbythetwosecondordermethodsandtheprobabilityfoundfromthe
planarapproximationareapproximatelyequal.

Table3-2:ReliabilityAnalysisof a45° Gr/EpComposite
FailureCriterion:
AppliedStress

/MPal
MPP-Normalized

(x_*)

SLt

SLc

STt

STc

SLTs

Reliability

Index _l
Radius of

Curvature R

Probability of
Failure:

Ctl. Hypersph:
Planar

approximation
Non Central

Hypersphere
Rotational
Parabaloid

"Exact"
Value

55

0.0067

--0.540

-5.68

5.71

523

3.97e-7

5.75e-9

7.28e-9

5.75e-9

Tsai- Hill II Tsai- Wu I

70

0.0016

-2.92

-2.93

4.14

529

65.6e-5

1.72e-5

2.73e-2

2.26e-4

85

0.0004

-1.43

-1.40

2.00

360

262e-3

2.28e-3

4.95e-2

4.54e-2

55

-0.0379

0.0727

-5.36

0.0835

-1.07

5.47

540

2.93e-5

4.73e-8

7.09e-8

2.29e-8

5.13e-5 3.03e-2

Importance
sampling 1.29e-8 6.21e-5 3.52e-2 5.01e-8

70

-0.0451

0.0739

-2.05

0.202

-2.75

3.44

310

374e-4

2.94e-4

4.01e-2

3.01e-4

85

-0.0197

0.0446

-0.909

0.104

-0.953

1.32

215

88.3e-2

9.31 e-2

19.2e-2

9.46e-2

In table 3-2 the results calculated by the various FPI methods (except the Central Hypersphere) are

extremely similar. Only the failure probability values calculated by the Planar Approximation are
systematically below the "exact" values. This is expected because this approximation is liberal in dangerous
curvature cases. All other reliability methods (second order FPI and Importance sampling) appear to have

equal accuracy. This is significant in the first two simulations performed using the Tsai-Hill Failure Criterion
(Applied Axial Stress of 55 and 70 MPa respectively) in that the radius chosen for the approximation was the
smaller of the two dangerous curvatures calculated. Therefore even a conservative second order
approximation may result in a relatively accurate reliability analysis. It is important to note the change in
the nature of the curvature as a function of the applied stress level using the Tsai-Hill failure Criterion. This
shows that shape of the failure surface can change based solely on the stress applied. Because assumptions

about this shape may be used when determining which reliability method should be chosen, this property
must be considered.
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Table 3-3: Reliability Analysis of a 60 ° Gr/Ep Composite

Failure Criterion: Tsai - Hill II rsai - wu

55 60 65 55 60 65Applied Stress

(MPa 1
Normalized

MPP (x*)

SLt

SLc

STt

STc

SLTs

Reliability

Index 13
Radius of

Curvature R

Probability of
Failure:

Ctl. Hypersph:
Planar

Approximation
Non Central

Hypersphere
Rotational
Parabaloid

"Exact"
Value

Importance
Sampling

0.00052

-3.70

-0.342

3.72

1100

3.13e-3

9.96e-5

0.00057

-3.03

-0.385

3.06

909

2.51e-2

1.12e-3

0.00058

-2.33

-0.396

2.37

766

1.33e-1

8.99e-3

-0.0141

0.0273

-3.49

0.0588

-0.53

3.53

907

2.82e-2

2.05e-4

-0.0134

0.0263

-2.77

0.0657

-0.561

2.82

755

1.58e-1

2.38e-3

-0.0115

0.0231

-2.02

0.0649

-0.523

2.09

640

4.99e-1

1.84e-2

11.4e-5 1.32e-3 10.7e-3 3.20e-4 3.87e-3 2.95e-2

11.4e-5 1.32e-3 10.7e-3 3.20e-4 3.85e-3 2.93e-2

10.9e-5 1.25e-3 10.9e-3 2.31e-4 2.75e-3 2.28e-2

12.0e-5 1.43e-3 11.8e-3 1.16e-4 1.42e-3 1.24e-2

It can be seen from table 3-3 that the nature of the curvature is strongly dependent upon the orientation

angle for the Tsai-Hill failure criterion. It has been found by a variety of simulations that any Tsai-Hill
reliability analysis performed with an angle of orientation greater then 50 ° will result in all curvatures being
safe. This is apparent in table 3-3. In this type of case the probability of failure determined by the planar
approximation would be conservative. The only method capable of providing a potentially more accurate
result is the the Importance Sampling method. However, in the three simulations of this type performed the
Importance Sampling method did not offer an improvement in the accuracy of the calculated results over FPI.
Nearly all of the demonstrated reliability methods performed equally well when the Tsai-Wu failure criterion
was used.

The one type of situation in which the Importance Sampling Technique does not perform well is that of

low reliability (B approaches zero). As B decreases the volume contained within the [3-sphere also decreases

and the efficiency of this method approaches that of the basic Monte Carlo method. This may be of little
importance in application of this method to actual design problems in that low reliability cases will be rarely
modelled.

Two additional orientations where these techniques can be compared is 0° and 90 °. Unlike the

previous cases, these orientations can result in design problems with closed form solutions. This is due to
simplifications that these orientations cause in the failure criteria used. At these orientations the Tsai-Hill
criterion reduces to:

2 2
t_ t_

For 0°: x___.__x_ Oxx Oyy + xy = 1 (3.2a)
2 2 2

SLt SLt ST t
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For90°:
2 2

_yy _ _yy°xx + xy = 1

2 S 2 2
SLc Lc STt

(3.2b)

If we further assume that the composite is under a single load applied in the X direction, this reduces to:

For 0°: SLt = Oxx (3.3a)

For 90°: STt = °xx (3.3b)

These two equalities offer closed form solutions. When this case is analyzed by the methods given above,
the only one which accurately predicts the reliability is the Hasofer-Lind method, although this type of
analysis is unnecessary. With this same assumption, the Tsai-Wu failure criterion reduces to

SLt SLc
For 0°: SLt- SLc + Cxx = (3.4a)

Oxx

STt STc
For 90°: STt - STc + °xx - (3.4b)

Oxx

Even though these equations are not as simple as those derived from the Tsai-Hill failure criterion, when they
are used the reliability estimates calculated by the Hasofer-Lind method are still quite accurate (within 5%
of the "exact" value).

Conservatism.mAll FPI methods being evaluated in this report may suffer from a predetermined
conservatism or liberalism depending upon the nature of the design problem being analyzed. In each case the
decision of which method to use must be made. This decision will determine if the calculated probability of

failure will be liberal (potentially too low an estimate) or conservative (usually higher than necessary). In all
cases the Central Hypersphere approximation offers a conservative estimate but at the same time is usually
highly inaccurate (see tables 3-1 to 3-3). The planar approximation on the other hand can be either liberal or
conservative depending on the curvature of the surface at the MPP. When a failure surface has all safe
curvatures then this approximation will be conservative; while if even one curvature is dangerous this
approximation may be liberal. The second order approximations are even more complicated due to the
variety of possible curvatures used to approximate the surface shape. Using a large curvature (small radius)
is conservative, while a small curvature (large radius) is liberal. These second order methods appear to offer

the closest approximation to the actual surface however.
Computational Speed.--The speed of the methods is difficult to describe due to their case

dependency. Computational speed is also dependent upon the initial guess used to determine the MPP.

Because all methods, with the exception of the basic Monte Carlo method, require the determination of I_,

this may be ignored. The two important items which affect the speed of the FPI methods are the order of the
approximation and the difficulty in evaluating the mathematical expression used to approximate the

probability of failure. Once [3 has been determined, the first order methods require the evaluation of the
normal distribution function for the planar approximation and the chi-square distribution function for the

central hypersphere. Both of these functions are relatively simple to evaluate computationally.
Additionally the second order methods require the determination of a rotation matrix, the evaluation of

first and second derivatives at the MPP, and the determination of the eigenvalues of the characteristic

equation to determine the curvatures. These steps add substantially to the computational time. The two
mathematical functions we must evaluate for these methods are more complicated than those used for the

first order. The Non-Central Hypersphere approximation requires the evaluation of the non-central chi-squared
distribution function. This is done by integrating the chi-squared density function using a numerical

quadrature where each density function value is represented by the summation of an "infinite" number of
terms. Accurate results for this calculation are only possible for failure surfaces (g-functions) with small radii

at the checking point; for large radii, generation of accurate results are not possible using available
computational techniques. For the Rotational Parabaloid the calculation of the distribution function requires
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theintegrationbynumericalquadratureof theconvolutionof anormallydistributedtermandachi-squared
term.Thesetwomethodsarefarmorecomputationallytimeconsumingtheneitherofthefirstordermethods.

TheMonteCarlomethodsavailablearebyfartheslowestcomputationally,dueto theirrepetitive
nature.Thiscanbeshownin thefollowingexample:

Example3-1.mAsmentionedin theIntroduction,thechoiceof thestrengthsasdesignvariablesis
basedona knowledgeof compositemanufacturingtechniques,whilethechoiceof thestressesas
deterministicvaluesisrelativelyarbitrary.It isnotdifficultto imagineadesignprobleminwhichthe
appliedstressesarealsorandomvariables.In thissituationtheproblemwouldhavesixrandomvariablesif
analyzedwith theTsai-Hillfailurecriterionandeightif analyzedwithTsai-Wu.Analysisofthistypeof
problemwiththeFPImethodsgivenwouldnotrequiresubstantiallymorecomputationaltime.Theonly
changewouldbethedifficultyof thesearchfortheMPP.Thespeedof theMonteCarlomethodsonthe
otherhandwouldbegreatlyaffected.Becausethenumberof randomvariablesthatarerequiredduringeach
simulationis directlyrelatedto theamountof computationaltimerequiredtoperformeachsimulation,this
changewouldincreasetheamountof timerequiredto performthebasicMonteCarloproportionately.The
ImportanceSamplingdrasticallycutsdownthenumberof simulationsrequiredbutatthesametimerequires
thedeterminationof 13asin theFPImethods.It isstill farquickerthanthesimpleMonteCarloin nearlyall
cases.

ImplementationDiffieulty.--The simplest method to program is the basic Monte Carlo method. All

that is required is random number generation to obtain realizations of the strengths (and stresses, if required),
followed by an acceptability test using the failure criterion. The first order methods and the Importance

sampling are only slightly more difficult. These require using a minimization routine with the failure criterion
as the equality constraint. Once this is performed and the reliability coefficient, 13, is known, the next step is
either the analysis of a distribution function for the first order methods, or a series of random numbers
generated in the reduced domain for Importance Sampling. These two methods are still relatively simple to
program if a packaged minimization routine is available. By far the most difficult methods to implement are
the second order methods. This is due in part to the number of steps involved in each method and the

complexity of the individual steps. Once the reliability coefficient is known the coordinate system must be
rotated to align one of the new axes with the vector to the MPP. This is followed by calculation of the first
and second-order derivatives which are used to determine the curvatures. An eigenvalue problem is solved

for the principal curvatures. These principal curvatures are examined and a single positive curvature is

chosen to determine the radius of curvature based upon the conservativism desired. The parameters 13 and R

are used to evaluate the distribution functions which govern the particular approximation. Another factor that
affects the implementation difficulty is the number of program changes required to perform each case. As the
methods get more complicated more information must be known about the problem definition. The only case-
dependent requirement of the first order FPI and Monte Carlo methods is the failure criterion equation. The
Importance Sampling method requires this criterion and a parameter for the truncated distribution used to
generate random numbers. The second order FPI methods require the equations of the first and second
derivatives of the failure criterion at the MPP in addition to the failure criterion equation for each case.

These additional steps must be examined in the context of the computational speed and accuracy desired.
Non-Normal Variahles.mA brief comparison of methods can also be made for design problems

involving independent variables with non-normal distributions. The accuracy of the probability of failure
estimates determined by the individual methods will be evaluated over a range of orientation angles and
applied stresses. Computational speed, intrinsic conservativism, and the difficulty of implementing the
methods will also be compared briefly. In this comparison two FPI methods will be examined; the Rackwitz-
Fiessler method with a planar approximation and the Rackwitz-Fiessler method with the Central hypersphere
approximation. These results will be compared to the reliability estimates calculated by the Hasofer-Lind
method using normal distributions that are "equivalent" (possess the same means and standard deviations) to
the original non-normal distributions and to the basic Monte Carlo method, which is believed to be the most
accurate. The number of simulations performed by the Monte Carlo method will be chosen to give a very
accurate (defined "exact") estimate. As in the normal variable section this is done by requiring the number
of failures calculated (in each simulation) to be larger than 50.

The material used in this analysis is a ceramic matrix composite (CMC). The specific material
chosen consists of SiC/RBSN. This CMC is evaluated by examining its three strength properties with

nominal (average) values:

Longitudinal Ultimate Strength: 680 MPa
Transverse Strength: 27 MPa

In-Plane Shear Strength: 53 MPa
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Thesepropertiesareall fortensileloadingof thematerial(theshearstrengthis independentof theloading
sign).Fromexperiments,thedistributionof thesepropertieshasbeenshowntofollowaWeibulldistribution
withthenominalparameters:

LongitudinalUltimateStrength:
TransverseStrength:
In-PlaneShearStrength:

Shape Location
Parameter Parameter

5.2 741MPa
10.9 28MPa
7.5 56MPa

Duetothelimitedamountof experimentaldataforcompressivestrength,thiscompositewill beevaluated
bytheTsai-Hillfailurecriteriononly. Theresultsof theaccuracyanalysiscanbeseenin thefollowingtable.

Orient.Angle
AppliedStress

MPP:SLt

STc

SLTs
Reliability

Coefficient:[_
Probabilityof

Failure:
Ctl.Hypersph.:

Planar
Approximation

"Exact"
Value

Table3-4:Tsai-HillReliabilityAnalysisof CMCComposite
30° II 45° U 60°

"Equivalent"
Hasofer-Lind

40 MPa

579 MPa

17.8 MPa

21.0 MPa

4.09

8.02e-4

2.55e-5

50 MPa

625 MPa

25.7 MPa

24.8 MPa

2.87

4.08e-2

2.02e-3

20 MPa

653 MPa

10.2 MPa

52.6 MPa

4.16

2.31e-3

6.06e-4

1.58e-5

30 MPa

653 MPa

15.7 MPa

51.9 MPa

2.93

3.54e-2

1.70e-3

4.67e-4 2.54e-3 4.64e-4 9.29e-3

"Equivalent"

3.44 2.83 4.01 2.68

4.85e-5 3.10e-5 3.72e-3

12 MPa

653 MPa

9.04 MPa

53.0 MPa

4.45

1.88e-4

4.33e-6

20 MPa

653 MPa

15.2 MPa

52.8 MPa

3.03

2.73e-2

1.24e-3

1.92e-4 9.28e-2

4.28 2.79

9.25e-6 2.64e-3

From table 3-4 it can be seen that neither of the two FPI methods available show systematic accuracy.

The only pattern in the inaccuracy of the methods is that the planar approximation always gives probability of
failure (Pf) results which are smaller than the "exact" value (under-estimated) while Pf calculated with the

Central Hypersphere is always higher (over-estimated). In terms of application to actual design problems
these calculated Pf estimates would only be valuable as limits: the central hypersphere approximation being

the lower limit and the planar approximation the upper. The values in the final two rows of the table are
calculated by the Hasofer-Lind method using normal distributions "equivalent" (having the same means and
standard deviations) to the original Weibull distributions. In all cases this relatively unsophisticated

approach, with a planar approximation, calculates probability of failure values that are closer to the "exact"
value than those calculated with Rackwitz-Fiessler method. However, these estimates are still too liberal for

general application. It appears from the cases examined that as the load increases (probability of failure
increases) the planar approximation becomes more accurate. To test this hypothesis three additional cases
were tested: an orientation angle of 30 ° with an applied axial load of 60 MPa, an orientation angle of 45 °

with an applied axial load of 40 MPa and an orientation angle of 60 ° with an applied axial load of 60 MPa.
In each case the probability of failure estimated using the Rackwitz-Fiessler method with a planar

approximation was about 65% of the "exact" value. This is slightly more accurate than the previous cases.
Why these results appear to follow this pattern is unknown, however.
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Thesetwoapproximationsusedin theRackwitz-Fiesslermethodrequirenearlyidenticalamountsof
computationaltime. Bothrequirethesameiterativeapproachtocalculatethereliabilitycoefficient.The
onlydifferenceis theevaluationofthetwodistributionfunctions.Thechi-squareddistributionfunction
requiredfor theCentralHypersphereis slightlymoredifficulttoevaluatethanthenormaldistributionfunction
usedin theplanarapproximation.Thedifferenceisminimal,however.Theseapproximationshavethesame
intrinsicconservativismwhenappliedtotheRackwitz-Fiesslermethodasthedangerouscurvaturecasedoes
withtheotherFPImethods.Theplanarapproximationis liberalwhilethecentralhypersphereisconserv-
ative.Computationaltechniquesusedtoevaluatethesetwoapproximationsarealsoequallydifficultto
implement.

3.2Sensitivity

MeanStrengths.mAnyvariationin themeanvalueof thestrengthdistributioncanhavea strong
effect on the probability of failure of the system. The rate that this variation changes Pf gives the sensitivity

of the probability of failure to the mean value. To analyze this sensitivity a series of reliability estimates are
made by varying the mean value while all other properties (orientation angle, applied load and other
distribution parameters) are held constant. The calculated failure probabilities are then compared to
determine the relationship between Pf and the mean strength values. From observation it can be determined

that the log of Pf is roughly linearly dependent upon the mean value of strength. This is to be expected in

that all of the distribution functions used in the FPI methods are to some extent exponential in form. To show

how this type of numerical sensitivity study could be performed the following example is provided:
Example 3-2.rain this example we determine the sensitivity of the probability of failure to the mean

value of the shear strength. Preliminary results have shown that varying the mean shear strength results in the

greatest change in the probability of failure (as compared to the axial or transverse strengths). The lamina
being analyzed is a graphite fiber/epoxy matrix lamina with a 45 ° orientation angle. The coefficient of
variation is 0.10. The other parameters for the strength distributions are taken to be the nominal values listed

in Section 3.1. The applied stress is 90 MPa.
This case will use the Tsai-Hill failure criterion. From the previous section, it has been shown that the

Hasofer-Lind method gives accurate results for design problems of this type and thus will be used for this

analysis.
A linear plot does not present a simple relationship. If the data are viewed on a semi-log plot (log

scale for the probability of failure) then an exponential relationship can be seen; see figure 3.1.
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Figure 3-1: Sensitivity to Shear Strength Mean Value (Tsai-Hill failure criterion)

To analyze this case a linear relationship is assumed between the log of Pf and the mean shear strength

value. The equation of the line determined by a least squares method is

or

Log (Pf) = 13.99 - 0.2678 USLT s

Pf= 10(13.99-0.2678 _tSLT s )

(3.5a)

(3.5b)

where I.tSLTs is the mean value of the shear strength distribution in MPa. With this equation a relatively

accurate prediction of the probability of failure can be made at any mean strength value as long as it remains
close to the values used to generate equation (3.5b).

The sensitivity Pf to changes in the mean strength value can be evaluated using the first derivative of

equation (3.5b):

dPf -- 0.616x 10 (13"99 - 0.2678 P,SLTs ) (3.6)

dl-tSLT s

Standard Deviation of Streogtbs.mThe probability of failure is also sensitive to changes in the
standard deviations of the strength distributions. To analyze this sensitivity, a series of Pf calculations are

made while changing the value of the standard deviation with all other properties (orientation angle, applied
load and other distribution parameters) kept constant. The failure probabilities are calculated using a
reliability method and then compared. From this comparison, a numerical relationship between the
probabilities of failure and the standard deviation is determined. A semi-log plot is again expected to yield
the most insight into the results. The following example is provided to show how this type of numerical

sensitivity study would be performed.
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Example 3-3.--In this example, we determine the sensitivity of the probability of failure to the
standard deviation value of the shear strength distribution. The lamina being analyzed is of graphite

fiber/epoxy matrix with a 30 ° orientation angle. The coefficient of variation for all unchanging distributions is
0.10. The means of the strength distributions are the nominal values listed in Section 3.1. The applied load is
90 MPa.

This example uses the Tsai-Hill failure criterion. From Section 3.1 it has been shown that Importance
Sampling is the only method which gives accurate results for this type of design problem. The relationship
between the standard deviation and probability of failure can be seen in figure 3-2.
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Figure 3.2: Sensitivity to Shear Strength Standard Deviation.

Although these values do not lie quite as smoothly on a line as in figure 3-1, a linear relationship
between the log of the probability and the standard deviations of transverse strength can still be found by a
least squares approach. This relationship is:

Log (Pf) = - 12.45 + 1.104 (ISLTs (3.9a)

or:

pf= 10(-12.45 + 1.104 (_SLTs) (3.9b)

where c_SLTs is the standard deviation of the shear strength distribution in MPa. This gives relatively

accurate predictions of the probability of failure in the neighborhood of the nominal values. The sensitivity of
the probability of failure is the first derivative with respect to the standard deviation. For the shear strength
the sensitivity is

dPf - 2.539x 10 (-1245 + 1.104_SLTs) (3.10)
do SLTs
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Applied Stress.raThe probability of failure is also sensitive to changes in the deterministic input of
the design problem. In this report the two variables that have been considered deterministic are the applied
stress and the orientation angle. We expect the variability in the orientation angle to be quite small, since

the lay-up process is usually accurate. On the other hand, the applied stress may have uncertainty associated
with it. To analyze the sensitivity of the probability of failure to the applied load, a series of Pf estimates are

made by changing the value of the applied stress with all other properties (orientation angle and strength
distributions) held constant. The calculated failure probabilities are then compared. A numerical relationship

between the probabilities of failure and the applied stress is determined from this comparison. A semi-log
plot is chosen for clarity of representation. The following example is provided to show how this type of study
would be performed.

Example 3-4.rain this example, we will determine the sensitivity of the probability of failure to the

axially applied stress, t_xx. The lamina being analyzed is a graphite fiber/epoxy matrix with a 30 °

orientation angle. The coefficient of variation for all distributions is 0.10. The mean values of the strength
distributions are the nominal values listed in Section 3.1. The nominal value of applied stress is 90 MPa.

This example uses the Tsai-Hill failure criterion. The second order method using the Rotational
Parabaloid approximation gives accurate results for this type of design problem and will be used for this

analysis. The relationship between the applied stress and probability of failure can be seen in figure 3-3.
Typical of brittle materials, there is a great sensitivity to the applied stress.
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Figure 3-3:Sensitivity to Applied Load.

This relationship is analyzed by the same approach as in the previous examples with the following results

Log (Pf) = 0.145 _xx - 17.68 (3.12)

pf= 10(0.145(_xx - 17.68) (3.13)

where _xx is the applied axial load in MPa.
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3.3ImportanceFactors

Importancefactorsareameasureof theimpactaspecificvariable'srandomnesshasontheoverall
designproblem.Theyarealsothedirectioncosinesof theMPPpositionvectorin reducedvariablespace.
Thedirectioncosineassociatedwithavariableis theratioof thereducedvariablevalueattheMPPtothe
distanceto theMPP,whichdistanceis thereliabilitycoefficient[3.Theimportancefactorsaredefinedas
follows

ILt
ILc
ITt
ITc
ILTs

= Axial Tensile Strength Importance Factor

= Axial Compressive Strength Importance Factor

= Transverse Tensile Strength Importance Factor

= Transverse Compressive Strength Importance Factor

= In-plane Shear Strength Importance Factor

The results of the importance factor analysis are shown in tables 3-5 to 3-7. Each table consists of the results
calculated from reliability analysis of a specific lamina with a given orientation angle, using both the Tsai-
Hill and Tsai-Wu failure criteria. The strength parameters for the graphite/epoxy composite analyzed are the
same as those used in section 3.1. The stress values applied coincide with those used to generate the

probability of failure values found in tables 3-1 to 3-3. The importance factors are found for the three strength
distributions used for the Tsai-Hill failure criterion and the five used for the Tsai-Wu failure criterion.

Table 3-5: Importance Factors for a 30 ° Gr/Ep Composite

Failure Criterion: Tsai - Hill U Tsai - Wu

70 90 120 70 90 120Applied Stress,
MPa

ILt

(ILc)

ITt

(ITc)

ILTs

1.8x 10 -4

3.1x 10--2

=1.0

3.9xl0-4

7.6x 10- 2

=1.0

1.1×10 -4

21x10-2

0.977

1.1x 10-2

1.3x 10-2

8.6x 10 -2

2.6x 10 -2

0.996

1.gx 10-2

2.4x 10-2

17×10-2

4.4x 10--2

0.987

3.4x 10 -2

4.9x 10-2

33x 10-2

7.6×1o-2

0.941

From Table 3.5 it can be seen that the randomness of the shear strength dominates all of the other

strength variabilities for this lamina. This domination is nearly complete in the two cases analyzed with the
Tsai-Hill failure criterion, with applied loads of 70 and 90 MPa. In contrast the variability of the axial
strengths (both tensile and compressive) have nearly no effect on the results. This lack of importance can
also be seen in the transverse tensile strength when using either failure criterion. The variability of the

transverse compressive strength on the other hand has a moderate effect (in Tsai-Wu analyzed problems
only) on the design problem. The meaning of these importance factors can be seen in following examples:

Example 3-5a.EIn the last case (Tsai-Wu failure criterion with applied axial load of 120 MPa) there
are a range of importance factors. We can compare the effect of these factors by replacing a single variable
with its mean value in the failure criterion and reducing the number of variables in the design problem by
one. In this example, the axial tensile strength SLt is replaced by its mean value (1400 MPa). The

reliability coefficient calculated with the variable is 1.19 while the coefficient with the deterministic value is
still 1.19. This shows that the randomness of a variable with a importance factor of 0.034 is insignificant to

the design problem.
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Example 3-Sb.--We continue to use the last case but in this example replace the transverse tensile
strength variable, which has an importance factor of 0.33, by its mean value (70 MPa). The reliability
coefficient calculated with the variable is 1.19 but the coefficient with the deterministic value is now 1.25.

This is only a 5% change in the reliability coefficient but results in a -11% change in the probability of
failure estimated with the Hasofer-Lind method. This shows the significance of the randomness of a variable

with a factor slightly larger than say 0.1.
Example 3-5c.--In this example, using the previous results, we replace the shear strength variable,

which has an importance factor of 0.941, by its mean value (70 MPa). The reliability coefficient calculated
with the deterministic value is 54.1 This is 45 fold change in the reliability coefficient and results in a

probability of failure which cannot be easily estimated with the Hasofer-Lind method due to computer
limitations. This shows the overwhelming dominance of the randomness of a variable whose importance

factor is above say 0.9.
The lack of importance of the axial strength's variability is expected due to the dependence of the

failure criteria upon the reciprocal of the strengths squared. The relatively large nominal values of the axial

strength (when compared with other strengths) reduces their impact on the failure criteria. The lack of
importance of the transverse strength randomness may be due to the small orientation angle and loading
scheme used.

Table 3-6: Importance Factors for a 45 ° Gr/Ep Composite

Failure Criterion: Tsai - Hill II Tsai- wu

55 70 85 55 70 85Applied Stress,
MPa

ILt

(ILc)

ITt

(ITc)

ILTs

1.2x 10 -3

95x10-3

0.995

3.9x 10 -4

0.705

0.708

2.0x 10-4

0.715

0.700

6.9x10 -3

13x10 -3

0.980

15x10-3

0.196

1.3x10 -2

2.1x10 -2

0.596

5.9x10 -2

0.799

1.5x 10 -2

3.4x 10 -2

0.689

7.9x 10 -2

0.722

Shear strength variability continues to dominate the cases found in table 3-6. Additionally the
randomness of the transverse tensile strength does have a strong effect on the cases analyzed with the Tsai-
Wu failure criterion. This overall increase in importance (when compared with the results from table 3.5) is

due to the larger orientation angle. The variabilities of the remaining three strengths (axial tensile, axial
compressive and transverse compressive) have very slight importance. The importance of randomness of both
the axial and transverse strengths increases with applied stress while the shear strength variability importance

decreases.
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Table3-7:ImportanceFactorsfor a 60 ° Gr/Ep Composite

Tsai - Hill Tsai - Wu

55 60 65 55 60 65

Failure Criterion:

Applied Stress,
MPa

ILt

(ILc)

ITt

(ITc)

ILTs

--0

0.996

0.092

=0

0.992

0.126

-0

0.986

0.167

0.004

0.008

0.988

0.017

0.150

0.004

0.009

0.980

0.023

0.199

0.005

0.011

0.968

0.031

0.250

The importance factors of the variables shown in table 3-7 vary somewhat depending upon the failure
criterion employed for the analysis. The variability of the transverse tensile strength dominates the cases
analyzed with both the Tsai-Hill failure criterion and the Tsai-Wu failure criterion. The variability of the
shear strength also has a modest contribution. The increased importance of the randomness of the transverse

strengths is due to the increase in orientation angle. The randomness of the axial strengths has nearly no
effect on these cases.
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4.SUMMARYANDCONCLUSION

In thisreportweexamineda varietyof methodsusedtoevaluatethereliabilityof compositelaminae.
Theinitialportionof thisreportdiscussedthenecessarystepsinvolvedinposingthedesignproblemin the
requiredform.ThespecificformusedthecompositestrengthsasdesignvariablesandtheTsai-HillandTsai-
Wufailurecriteriaforfailuredetermination.Thefirstmethodtypediscussedwasthefastprobability
integration(FPI)methods.Theseconsistedof twogroups:firstorder,secondmomentreliabilitymethodsand
secondorder,secondmomentreliabilitymethods.ThesecondtypediscussedwastheMonteCarlomethods.
Thetwomethodsdiscussedin thiscategorywerethebasicMonteCarloandtheImportanceSampling
methods.Thesemethodswereexaminedindetailandtheirproceduresfor implementationwereoutlined.

Thenextportionof thisreportusedcalculatedprobabilityof failureestimatestoevaluatethese
reliabilitymethods.A generalcomparisonof theaccuracyof theprobabilityof failureestimates,the
efficiencyof themethodsatdeterminingtheseestimates,andtheconservativismof theestimationwas
performed.Thiswasdesignedtocomparehowthesemethodsperformedwhenanalyzingthespecifictypeof
designproblemusedin thisreportandtodescribethegeneralmethodologyinvolvedinmakingacomparison.
Thesensitivityof theprobabilityoffailureestimateto variationsin theparametersofthedistributionof the
designvariableswasdiscussed.Thisinvolvedspecificsensitivitystudiesandadescriptionof the
methodologyrequired.Thefinalsectionof thisreportevaluatedimportancefactors.Theimportancefactors
of thevariableschosenfor theexampledesignproblemswerefound,andtheimpactof eliminatinglow
importancevariableswasevaluated.

Theconclusionsderivedin thisstudycomein threeparts:thosemadeabouttheapplicationof the
methodsdiscussed,thoseaboutthesensitivityanalysisresultsandprocedure,andthoseinvolvingimportance
factors.Thesectionsbelowwill discussthesetopicsin termsof theirgeneralapplicationandtheir
applicationtothespecificproblemsoutlinedwithinthisreport.

TheHasofer-Lindmethodis byfarthemostefficientmethoddiscussed.It isnotonlythesimplest
methodtoimplement,butit alsorequirestheleastamountof computationaltimetoperform.Thelimitation
of thismethodwouldappeartobetherelativelycoarseapproximationof thefailuresurface.Fromprevious
examples(seeref.5) thisappearedtomakethismethodhighlyinaccurate.Fromtheseresults,the
probabilityof failureestimatesgivenbythismethodareasaccurateasanyof themethodschosen(seetables
3-1to3-3).Thisismostlikelyduetothetypicallylargeradiusof curvature(whencomparedto the
reliabilitycoefficient)foundin theseresults.In otherapplicationsthismaynotbethecase.Otherpossible
benefitsof thismethodareitsinsensitivitytothenumberof variablesin thedesignproblemanditsabilityto
handlecomplexfailurecriteria.Dueto thesepropertiesandthesimplicityof theimplementationprocedure,
thismethodis suggestedfortheinitialanalysisof anydesignproblem.Stepsshouldbetaken,however,to
verifytheaccuracyof thecalculatedresults.Thisverificationprocedurewill likelyrequirethe
implementationof oneof thehigherorderFPI(orsampling)methods.

TheCentralHyperspheremethodisasefficientastheHasofer-Lindmethod,butoffersnoneof itsother
benefits.In all casesanalyzed,probabilitiesof failurecalculatedwiththismethoddifferedsubstantiallyfrom
the"exact"value.Thisis likelyduetotheflatnessof thefailuresurfaceinourdesignproblem.In addition
totheinaccuracyof thismethodit alsosuffersfromastrongsensitivitytothenumberof variablesusedin the
designproblem.Thepositiveaspectsof thismethodarethatit isbothsimpleandcomputationallyquickand
will calculateresultswhicharealwaysconservative.Theamountthismethodover-estimatestheprobability
of failureis therealconcern.In generalapplication,thismethodmayresultinastructurewhichisover-
designed.Thisis bothinefficientand,typically,expensive.Asaresultthismethodissuggestedfor
determiningconservativereliabilityestimatesonlywhileanotherreliabilitymethodshouldbeusedasthe
primarymethodfor analyzingreliability.

Thesecondordermethods(boththeRotationalParabaloidandtheNon-Centralhypersphere)offer
somebenefitswhicharenotfoundin firstordermethods.In dangerouscurvaturecasesthesemethodscan
predictprobabilityof failurevalueswhicharecloserto theactualvaluethanthosepredictedbyeitherof the
first ordermethods(seetables3-1and3-2).Thisbenefitmaybeeliminated,however,if theapproximated
failuresurfacehasavarietyof curvatureswhichdifferinbothsignandmagnitude(seetable3-1,Tsai-Wu
criterion).Thesemethodsaspresentedherewerelimitedto analyzingdesignproblemswhichhave
dangerouscurvatures.In additiontotheselimitationsthesemethodsrequireadditionalknowledgeof the
failuresurfaceandmaybesensitivetotheradiusofcurvaturechosenforthesurfaceapproximation.These
methodsarealsomoredifficulttoimplementandrequiremorecomputationaltimetoperform.These
propertieslimit theapplicationof thesemethodstospecifictypesof designproblems.However,fromour
data,it isshownthatuseof thenon-centralhypersphereapproximationwiththesmallestradiusof curvature
offersa reliabilityestimatewhichisconservativebutmoreaccuratethenresultscalculatedusingthecentral
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hyperspheremethod.Usingthesemethodsfordesign problems with radii of curvature which are greater than
one order of magnitude larger than the reliability coefficient will not offer substantial improvements over a
first order method, because the failure surface is so "fiat" that linear surface is a good approximation. In

general, it should first be determined that the design problem does not have R >>B before the additional
steps involved in this method are performed. These two approximations (Rotational Parabaloid and the Non-
Central hypersphere) appear to offer very similar results. From these results it does not appear necessary to
analyze a design problem using both approximations.

The Importance Sampling method is far less computationally efficient than any of the FPI methods
discussed. It does, however, offer a possible improvement in the probability of failure estimates for design
problems with safe curvatures (see table 3-I, Tsai-Wu criterion). This is not possible with FPI methods,
because all the methods utilize "dangerous" curvatures to make approximations. Another benefit of this
method is that it does not suffer from any intrinsic conservativism as some of the FPI methods do. The

probability of failure estimates calculated with this methods have a similar accuracy for all types of design
problems. The only negative feature of this method is that it depends upon repetitive simulations. This means
that as the probability of failure decreases the amount of required computation time increases. However, if the
number of design problems being analyzed is small, the amount of computational time required for each
analysis may not be prohibitive. This method is suggested if it has been determined that the FPI methods are

giving inaccurate results or if the first or second derivatives of the failure surface are difficult to obtain.
The final method examined in this thesis is the Rackwitz-Fiessler method. This is the only method

capable of analyzing design problems with non-normally distributed variables. This method is slightly more
difficult to implement than the other first order methods. It does not appear to give accurate probability of
failure estimates when compared with the "exact" value. In fact an equivalent design problem using normally
distributed variables (which have the same means and standard deviations as the non-normal distributions)
appears to be more accurate. The inaccuracy of the Rackwitz-Fiessler method may be due to the type of
design problem being used in the analysis, however. The method itself has not been found to have any
intrinsic problems which would result in erroneous results. Due to the relatively limited examination of this
method only the most conservative approaches can be suggested. The Central Hypersphere approximation is
recommended for calculating an upper limit to the probability of failure.

Sensitivity.--All of the presented methods can be examined to determine the sensitivity of the
calculated probability of failure to changes in the parameters of a design variable's distribution. This

procedure could be used to determine the importance of obtaining a good estimate of the variable's
distribution. The only problem with the proposed procedure is its case dependence. To determine the
sensitivity of a design problem to a specific set of design parameters requires a complete sensitivity study. It
is suggested that if only one parameter is to be modified, then a sensitivity study using this method is
appropriate; but if multiple parameters are to be modified then this procedure may be too time-consuming to
perform.

Importance Factors.--The importance factors section of this report offers an approach to simplify
design problems. In general the randomness of any variable which has an importance factor approximately
equal to zero will have very little effect on the calculated results. Using this information, the problem can be
simplified by replacing this variable with its mean value in the failure criterion. In all of the cases analyzed
the variability of the shear strength was found to be very important while the variabilities of axial strengths
were found to be relatively unimportant (see tables 3-5 to 3-7). The importance of the other strengths'
variabilities was dependent upon the applied load, orientation angle and failure criterion used. A variable
which was found to be unimportant could be replaced with a deterministic value, which simplifies the problem
(see example 3-5a). This procedure may not offer significant computational time savings when using an FPI
method, due to the small number of design variables used. Unless a problem could be reduced to a single
random variable, which would offer a closed form solution, the savings would be minimal. For simulation

(Monte Carlo) methods, however, proportional savings in computer time could be achieved for the random
variables eliminated..
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